Biohydrogen and carboxylic acids production from wheat straw hydrolysate
نویسندگان
چکیده
منابع مشابه
Biohydrogen and carboxylic acids production from wheat straw hydrolysate.
Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42...
متن کاملButanol production from wheat straw hydrolysate using Clostridium beijerinckii.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L(-1) glucose (initial sugar 62.0 g L(-1)) was used to produce 20.1 g L(-1) ABE with a productivity and yield of 0.28 g L(-1 )h(-1) and 0.41, respectively. In a similar experiment where WSH (60.2 g L(-1) ...
متن کاملXylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation
Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.
متن کاملBioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate ...
متن کاملPhoto-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw
BACKGROUND Biotechnological exploitation of lignocellulosic biomass is promising for sustainable and environmentally sound energy provision strategy because of the abundant availability of the renewable resources. Wheat straw (WS) comprising of 75-80% cellulose and hemicellulose is one of widely available, inexpensive and renewable lignocellulosic biomass types. The cellulosic and hemicellulose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioresource Technology
سال: 2016
ISSN: 0960-8524
DOI: 10.1016/j.biortech.2016.05.119